Neuronal Networks

What Is Machine Learning?

Machine learning is the practice of using algorithms to analyze
data, learn from that data, and then make a determination or
prediction about new data.

// pseudocode
let positive = |
llhappyll’

"thankful”,
"amazing"

l;

let negative = [
llcanltll’
llwonltll'
"sorry",
"unfortunately”

l;

// pseudocode
let articles = [
{
label: "positive",
data: "The lizard movie was great! | really liked..."

b
{

label: "positive",

data: "Awesome lizards! The color green is my fav..."
7
{

label: "negative",

data: "Total disaster! | never liked..."
b
{

label: "negative",
data: "Worst movie of all timel..."

}
1;



What |s Deep Learning?

Deep learning is a sub-field of machine learning that uses
algorithms inspired by the structure and function of the brain's
neural networks.
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What Is Deep Learning?
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1.ANNSs are built using what we call neurons.

2.Neurons in an ANN are organized into what we call layers.

3.Layers within an ANN (all but the input and output layers) are called hidden layers.
4.1f an ANN has more than one hidden layer, the ANN is said to be a deep ANN.



An Artificial neuronal network
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1.Input layer (left): 2 nodes

2.Hidden layer (middle): 3 nodes
3.0utput layer (right): 2 nodes



Implementation in Keras:

# Keras is now a part of tensorflow. Tensorflow is a machine learning platform
import tensorflow
import keras

from keras.models import Sequential
from keras.layers import Dense, Activation

# Layers will be used in the instatiation of object Sequential
layers = [
Dense{units=3, input_shape=(2,), activation="relu'),
Dense{units=2, activation="softmax')

]

model = Sequential(layers)

*Dense (or fully connected) layers
*Convolutional layers

*Pooling layers

*Recurrent layers

*Normalization layers



@
N NN

LY AR
. )
SNyt EN e S

AT A e ‘ S K,
N a"e’#&tf“’?ﬁ.ﬂ’b%tﬁw %

(P R (K ) <)
S AT A am 7 ST NS
.6:@,.0@ e BRRNe
SITRNE:. SIS
)

RN AR

1725

layers = |

]

Dense(units=6, input_shape=(8,), activation="relu'),

Dense(units=6, activation='relu’'),
Dense(units=4, activation='softmax')

Layer Weights

node output = activation(weighted sum of inputs)

Learning: Finding The Optimal Weights




Activation Functions In A Neural Network

function that maps a node's inputs to its corresponding output.
node output = activation(weighted sum of inputs)
sigmoid 0. RelLU

J{E} == d;_lt. ._ | R(z) =mazx(0, z)

1]

node output = relu(weighted sum of inputs)

T 5 o 5 i -0

Output Softmax .

layer activation function Probabilities

1.3 0.02]

2.2 |m— b | 0.05
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1wl 0.02




Training An Artificial Neural Network

* Provide input AND output, optimize weights (fit) to best account for
all the training
Optimization Algorithm: Often Stochastic Gradient descent

Loss Function: Is the measure against which network is optimized.




Learning In Artificial Neural Networks

Gradient Of The Loss Function

[*]: import keras )
from keras.models import Sequential The learning rate tells us how large of

from keras.layers import Activation a step we should take in the direction

from ker‘as.la_‘,‘nlar?.c:ur"e.lmpﬂrt Dense of the minimum.
from keras.optimizers import Adam

from keras.metrics import categorical crossentropy . . . .
g s - # new weight = old weight - (learning rate * gradient)

model = Sequential([

Dense(units=16, input_shape=(1,), activation="relu'), Epoch 1/20 @s - loss: ©.6400 - acc: ©.5576
Dense(units=32, activation="relu’), Epoch 2/20 @s - loss: ©.6061 - acc: ©.6310
Dense(units=2, activation="sigmoid") Epoch 3/20 @s - loss: ©.5748 - acc: ©.7010

1) Epoch 4/20 @s - loss: ©.5401 - acc: 0.7633
Epoch 5/20 0s - loss: ©.5050 - acc: 0.7990

model. compile( Epoch 6/20 0s - loss: ©.4702 - acc: 0.8300
optimizer=Adam(learning rate=o.e001), Epoch 7/20 ©0s - loss: 0.4366 - acc: 0.8495
loss="sparse categorical crossentropy’ Epoch 8/20 0s - loss: ©.4066 - acc: 0.8767

P _ g _ PY
. : . Epoch 9/20 @s - loss: ©.3808 - acc: 0.8814
metrics=[ 'accuracy’ ]

Epoch 10/20 @s - loss: ©.3596 - acc: ©.8962

) Epoch 11/20 ©s - loss: ©.3420 - acc: 0.9043
Epoch 12/206 ©s - loss: ©.3282 - acc: 0.9090

model.fit( Epoch 13/20 @s - loss: ©.3170 - acc: ©0.9129
x=scaled train_samples, Epoch 14/20 O@s - loss: 0.3081 - acc: 0.9210
y=train_labels, Epoch 15/20 @s - loss: ©.3014 - acc: 0.9190
batch size=18, Epoch 16/20 @s - loss: ©.2959 - acc: 0.9205
epochs=2a, Epoch 17/20 @s - loss: ©0.2916 - acc: 0.9238
shuffle=True, Epoch 18/20 ©s - loss: ©0.2879 - acc: 0.9267
verbose=2 Epoch 19/20 ©s - loss: ©0.2848 - acc: 0.9252

) Epoch 20/20 0s - loss: 0.2824 - acc: 0.9286



Loss Functions In Neural Networks

MSE(input) = (output - label)(output - label)
classes

* We use sparse_categorical_crossentropy CE= — Z Yerueneuron * 1N Uprea . )

neuron=1

But many available:  *mean_squared_error
*mean_absolute_error

*mean_absolute_percentage_error
*mean_squared_logarithmic_error
esquared_hinge

*hinge

ecategorical_hinge

*logcosh

ecategorical_crossentropy
esparse_categorical_crossentropy
*binary_crossentropy
*kullback_leibler_divergence
*poisson

*cosine_proximity



Introducing The Learning Rate

new weight = old weight - (learning rate * gradient)

e Typically 0.0001 - 0.01
* Too large -> Oscillations,
* Too low, slow convergence



Train, Test, & Validation Sets Explained

Updates
Dataset Weights

Training  Yes

set
Validation No
set
Test set No

The training set is what it sounds like. It’s the set of data used
to train the model.

The test set provides a final check that the model is
generalizing well before deploying the model to production.

The validation set allows us to see how well the model is
generalizing during training.

Description

Used to train the model. The goal of training is to fit the model to the training

set while still generalizing to unseen data.

Used during training to check how well the model is generalizing.

Used to test the model's final ability to generalize before deploying to
production.



Using A Keras Model To Get A Prediction

predictions = model.predict(
x=scaled test samples,
batch_size=10,
verbose=0

for p in predictions:
print(p)

[ 0.7410683 0.2589317]
[ 0.14958295 0.85041702]

[ 0.87152088 0.12847912]
[ 0.04943148 0.95056852]



Overfitting In A Neural Network

model.fit(scaled_train_samples, train_labels, validation_split = ©6.28, ba
epochs=20, shuffle=True, verbose=2)

Train on 1680 samples, validate on 420 samples
Epoch 1/20
9s - loss: ©.6994

acc: 0.497@ - val_loss: ©.6960 - val_acc: ©.5000

Epoch 2/20 model loss
9s - loss: ©.6906 - acc: ©.5774 - val_loss: ©.6815 - val_acc: 0.6952

Epoch 3/20 train
@s - loss: @0.6754 - acc: ©.7179 - val_loss: 0.6613 - val_acc: 0.7857 0.8 4

Epoch 4/20 —— ftest
9s - loss: ©.6548 - acc: ©.7728 - val_loss: ©.6341 - val_acc: ©.8333

Epoch 5/28

9s - loss: ©.6296 - acc: 8.7958 - val_loss: ©.6001 - val_acc: 0.8571

Epoch 6/20 0.7 -

9s - loss: ©.5951 - acc: 0.8161 - val_loss: ©.5516 - val_acc: 0.8714 ’

Epoch 7/28

9s - loss: @.5545 - acc: ©.825@ - val_loss: ©.5084 - val_acc: 0.8881

Epoch 8/20

9s - loss: ©.5091 - acc: ©.8446 - val_loss: ©.4400 - val_acc: 0.9119

Epoch ¢/2@ § 0.6 1

Os - loss: ©.4637 - acc: ©.8726 - val_loss: ©.3886 - val_acc: ©.931@
Epoch 10/20

9s - loss: ©.4283 - acc: 0.8798 - val_loss: ©.3454 - val_acc: 0.9381
Epoch 11/28

9s - loss: ©.3997 - acc: 0.8863 - val_loss: ©.3096 - val_acc: 0.9524 0.5 4
Epoch 12/20

9s - loss: ©.3776 - acc: ©.8917 - val_loss: ©.2885 - val_acc: 0.9524

Epoch 13/20@

9s - loss: ©.3682 - acc: ©.8988 - val_loss: ©.2572 - val_acc: 0.9643

EpOCh 14/20 0.4
9s - loss: ©.3467 - acc: 0.90883 - val_loss: ©.2369 - val_acc: 0.9643 ’
Epoch 15/20

9s - loss: ©.3364 - acc: 0.9113 - val_loss: ©.2214 - val_acc: 0.9643 T T T T T T
Epoch 16/20 0 200 400 600 800 1000
©s - loss: @.3288 - acc: ©.9119 - val_loss: ©.2083 - val_acc: 0.9714
Epoch 17/20

9s - loss: @.3227 - acc: ©.9155 - val_loss: @.1971 - val_acc: 0.9643
Epoch 18/2@

9s - loss: ©.3182 - acc: ©.9137 - val_loss: ©.1889 - val_acc: 0.9786
Epoch 19/20

9s - loss: ©.3144 - acc: 0.9167 - val_loss: ©.180@9 - val_acc: 0.9714
Epoch 20/26

9s - loss: @.3115 - acc: 0.9161 - val_loss: ©.1749 - val_acc: 0.9714



Underfitting In A Neural Network Explained

model.fit_generator(train_batches, steps_per_epoch=4,
validation_data=valid batches, validation_steps=4, epochs=5, verbose=2)

Epoch 1/5
6s - loss: 8.7262 - acc: 0.4500
Epoch 2/5
Ss - loss: 8.05990 - acc: ©.5000
Epoch 3/5
3s - loss: 8.0599 - acc: ©.5600
Epoch 4/5
2s - loss: 8.8590 - acc: ©.5000
Epoch 5/5
4s - loss: 8.8590 - acc: ©.5000

val loss: 8.8598 - val _acc: ©.50080

val loss: 11.9812 - val _acc: ©.3125

val loss: 8.08590 - val _acc: 0.5000

val loss: 9.0664 - val acc: 0.4375

val loss: 7.8517 - val_acc: 0.5625

model accuracy

0.66 4 — train
— test

0.64
0.62
0.60 +

0.58

accuracy

0.56 1

0.54

0.52

0.50 +
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Supervised Learning For Machine Learning

LUDDT Dpditode LdLlEEUINLLSL LIUSDTIILURY
metrics=[ "accuracy"]

In [9]: M # weight, height
train_samples = np.array([
[15@, 67],
[13e, 68],
[28@, 65],
[125, 52],
[23e, 72],
[181, 7e]

In [1@]: M # @: male

B emale
train_labels = np.array([1, 1, 8, 1, 8, 8])

In [11]: M model.fit(
x=train_samples,
y=train_labels,
batch_size=3,
epochs=18&,
shuffle=True,
verbose=2

)

Epoch 1/1@

2/2 - Bs - loss: 1.8512 - accuracy: 8.58e@
Epoch 2/1@

2/2 - Bs - loss: 1.8362 - accuracy: 8.58828
Epoch 3/1@

2/2 - Bs - loss: ©.9798 - accuracy: 8.58e@
Epoch 4/18

2/2 - Bs - loss: 8.9555 - accuracy: @.50ee
Epoch 5/1@

2/2 - 8s - loss: 8.9416 - accuracy: 8.58e@
Epoch 6/18

2/2 - Bs - loss: 8.5212 - accuracy: 8.5888
Epoch 7/18

2/2 - Bs - loss: 8.9@8% - accuracy: 8.50ea
Epoch &/1@

2/2 - Bs - loss: 8.8747 - accuracy: 8.50e@
Epoch 5/1@

2/2 - Bs - loss: 8.8615 - accuracy: 8.58828
Epoch 18/1@

2/2 - Bs - loss: ©.8532 - accuracy: 8.588e@

Out[11]: <tensorflow.python.keras.callbacks.History at @x14b7fc7c2be>



nupervised Learning For Machine Learning
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Unsupervised Learning For Machine Learning
Autoencoder

Encoder E—» Decoder Z

Reconstructed
input

Original
input

Compressed
representation




Unsupervised Learning For Machine Learning
Autoencoder




Deep Learning With Convolutional Neural
Networks

Convolutional Layers: Filters that work on convolution to detect patterns

eedges
*shapes
*textures
ecurves
*objects
ecolors




Deep Learning With Convolutional Neural
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Deep Learning With Convolutional Neural
Networks




Visualizing Convolutional Neural Networks
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. In [13]: M import keras
Settl ng u p C N N S from keras.models import Sequential
from keras.layers import Activation
from keras.layers.core import Dense, Flatten

from keras.layers.convolutional import *
from keras.layers.pooling import *

In [14]: M model valid = Sequential([
Dense(16, input_shape=(20,20,3), activation='relu'),
Conv2D(32, kernel size=(3,3), activation='relu', padding='same'),
MaxPooling2D(pool size=(2, 2), strides=2, padding='valid'),
Conv2D(64, kernel size=(5,5), activation='relu', padding='same'),
Flatten(),
Dense(2, activation='softmax')

D

In [15]: M model valid.summary()

Model: "sequential 2"

Layer (type) Output Shape Param #
dense_7 (Demse)  (Nome, 20, 20, 16) 64
conv2d (Conv2D) (None, 20, 20, 32) 4640
max_pooling2d (MaxPooling2D) (None, 10, 10, 32) 5

conv2d_1 (Conv2D) (None, 190, 1o, 64) 51264
flatten (Flatten) (None, 6400) 9

dense_8 (Dense) (None, 2) 12802

Total params: 68,770
Trainable params: 68,770
Non-trainable params: ©
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Backpropagation n the fitting. oic of learning:
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And some math!

Definitions and Notation

Q. [-1

We define

§\ 0
s

257

L = number of layers in the network
Layers are indexed as/ = 1,2, ---, L — I, L

o . _ N
Nodes in a given layer / are indexed asj = 0, 1, ---,n — 1 o‘%ﬁ‘},‘;%fgz 2\ |
Nodes in layer / — ] are indexed as k = 0, / I PSS inC ZS\ Y £
odes in layer / — / are indexed as k = 0,1, ---,n — e s /;
B b of 8
OV NE W ORAS

v; = the desired value of node j in the output layer L for a single training sample

Cy = loss function of the network for a single training sample (sum of squared errors)

wj(-]{.) = the weight of the connection that connects node & in layer / — / to node j in layer /

1«1‘}/) = the vector that contains all weights connected to node j in layer / by each node in layer / — /

zj(-j) = the input for node ; in layer /

gV = the activation function used for layer /

aj(-i) = the activation output of node j in layer /



And some math!

Input z}’ )

We know that the input for node ; in layer / is the weighted sum of the activation outputs from the previous layer / — /.

An 1individual term from the sum looks like this:
() _(I-1)

\-1»']',7( Ay
So, the input for a given node j in layer / 1s expressed as
n—1
n—1 z) = D Wigak
Z (L) 2
— _ . - - (L) { (L) [/, (L)
J=0

n—1

Co = Z Co,,
=0



And some math!

Calculations %

(L) A (L)

oCo _ oCo oa 0z
L L L L
OH’(]‘)) CG(] ) OZS ) ’(]7)

)0 N

(L
OCO = CCO 001 321 )
OW SL) OO(JL) OZ(] ) OWS )

Let’s break down each term from the expression on the right hand side of the above equation.
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And some math!

Derivative of the loss with respect to activation outputs
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Motivation

We left off seeing how we can calculate the gradient
of the loss function with respect to any weight in the network.

o

. r—»_.é““k é:'e‘\e"‘ % N
@ W W
\ N

Recall, the weight we chose to work with to explain this idea was w'5, and we saw that

- ~ A (L) A (L)
cCo _ { ©Co oa 0z}

2 L ~ £ ~ L ~ ' ¥
(,-11'(,3) c-a(, ) ('z(, ‘ (‘\1‘(1_«)

that is not in the output layer, like w5 .

Suppose we choose to work with a wej

to this weight would be

~ A A (L-1) A (L-1)
cCo cCy oa; 0Z )
R (-1 n -1 ~ (L1 = -0
CH'(:: ) C'a(_‘v ) CZ(: ) C'H'Eﬂ;) )

Then the gradient of the loss with resp

The second and third terms on the right hand

hand side, —<“—_ will not be calculated in t n—1 (L) (L)
éaF) A A
‘ . 0Co _ 0Co 0a; OZ;
We need to understand how to calculate this - _
not in the output layer. oa (f‘_']) 0 A _](L) }L) oa (_)L_])

The calculation of this term will be our focu: .
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